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LETTER TO THE EDITOR 

The quantum Gelfand-Levitan-Marchenko equations and 
form factors in the sine-Gordon model 

Fedor A Smirnov 
Leningrad Branch of Steklov Mathematical Institute, Fontanka 27, 19101 1, Leningrad, 
USSR 

Received 18 July 1984 

Abstract. The quantum Gelfand-Levitan-Marchenko equation obtained by the author in 
a previous work is used to calculate the form factors in the quantum sine-Gordon model. 

The calculation of the Green functions for the models with a complicated vacuum 
structure is one of the most challenging problems in the theory of quantum completely 
integrable models (Faddeev 1980). In a number of papers (Lenard 1966, Thacker 1982, 
Jimbo et al 1980) the Green functions have been calculated for some special values 
of coupling constants when the models under consideration are equivalent to the free 
fermion ones. The behaviour of the Green functions in the neighbourhood of these 
points has been also investigated (Thacker 1982). 

The greatest progress was achieved by Korepin (1984). The expansion was obtained 
of the two-particle Green function into an absolutely convergent series for the one- 
dimensional Bose gas with non-zero density. 

In a paper by Karowsky and Weisz (1978) attempts were made to calculate the 
Green functions using some properties of form factors (matrix elements of local fields). 
The knowledge of all form factors makes it possible to calculate the Green functions. 

In the paper mentioned above some relationships for form factors were obtained. 
These relationships follow from CFT invariance and crossing symmetry and, being 
purely kinematical, do not allow the calculation of form factors completely. 

In the present paper the method of calculation of form factors in the sine-Gordon 
model with Hamiltonian 

H =  {fu:+~u’x+(m2/8y)[l - c o ~ 2 ( 2 y ) ~ ’ ~ u ] }  dx I 
will be presented. Our method is based on the Gelfand-Levitan-Marchenko equations 
obtained by Smirnov (1984). The form factors of exp[*i(2y)”’u(x)] corresponding 
to the states with an arbitrary number of elementary bosons and their bound states 
will be obtained. 

The investigation of form factors corresponding to solitons will be carried out in 
another paper. 

The sine-Gordon model was quantised by Faddeev et a1 (1980). In the derivation 
of the Gelfand-Levitan-Marchenko equations (Smirnov 1984) we used the lattice 
version of the model (Izergin and Korepin 1981). In the previous paper (Smirnov 
1984) the operators of creation-annihilation of physical excitations B i (  a ) ,  %,,,(a) 
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i cos i y p  +sinhp[a-$y(m + 1 -2j)l 
, = I 1 cos f y p  - sinh p [  a - $ y ( m + 1 - 2j)l 

sinh(i.rr - y )  k 
k cosh f( .rr - y)k sinh(fy)k 

S m h ( U )  = n . 
sin ku dk),  

With the accurate thermodynamical limit (Destry and Lowenstein 1982) in the 
formulae for norms of Bethe's vectors (Korepin 1982), it can be proved that the 
normalised 'in' state of the bound states of nl ,  n2,. . . , f lk  elementary bosons with 
momenta pl,  . . . , P k  (pi = ( wi, k i )  = 2m, sin(fyn,p)(cosh pa, ,  sinh p a , ) ;  m, is the mass of 
the soliton) has the following representation in terms of the operators 3:: 

/PI, n l ;  . . * ; P k ,  nk) in= . . Ni:%: , (a j , )  * * % ; , ( a j , ) n p h  ( 1 )  

where aj, > . . . > ajk, n p h  is the physical vacuum, 

cosh(fyk) sinh2(fymk) 
k sinh(&) cosh' &( .rr - y)k 

N ,  = ( 2 7 ~  sin ypm)"' exp 

i n ( p i ,  n i  ; . * ' ; P;, nklpl, n l ;  . . . ; P k ,  nk)in 

- - S n l , n ;  . . S n k , n ; ~ ( p ~ l  - p a : )  . . . 6 ( p a k  - p a : ) .  

The similar formulae for the 'in' state can be found in the papers by Faddeev (1980) 

Consider the operators +,(a)( 1 S m S [ T /  y] - l ) ,  +,,(a) which leave the vacuum 
and Faddeev and Takhtajan (1982). 

invariant and have the following commutative relations with %:, W :  

+m (a ,  ) 9 n + ( a 2 )  = t m n  ( 

+ ~ h  ( a1 1 % l( ~ 2 )  = t h m  ( a1 - ~ 2 )  % n+( 
- ~ 2 1 %  n+( ~ 2 )  +m (a ,  

+h ( (TI  
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where 

cos ku sinh i r k  sinh f ymk sinh f ynk 
tmn(a)=exp(-2 Jb k sinh( ~r - y )  k sinh iyk cosh f( ~r - y )  k 

exp[-iku +f( T - y)k] sinh +Irk sinh fymk 
tmh(a)=exp(-[.-m 2k s inh(n-y)k coshf(Ir-y)k sinhiyk 

exp[-iku - f( ~r - y )  k] sinh ;Irk sinh fymk 
S,m(rr)=exp( [-m2ksinh(fy)ksinh(a-y)k coshf(Ir-y)k 

00 

dk). 
sinh(iIr)k(e-ik” - 1) 

2k sinh fyk sinh( ~r - y )  k cosh +( ~r - y )  k 

Let us introduce new operators of creation-annihilation 

z,(u) = “(277 tan iymp)-’”(cl,(a)%,(a) 

z+,(v) = ~ i ‘ ( 2 1 r  tan ~ymp)l’2%+,(a)~,’(a)  

z h  ( a) = N h $ h  ( a) Z,’(a) = N$Y+(a)l);’(a). 

The value of the constant Nh is not essential in the present paper. 

a new realisation of the Zamolodchikov-Faddeev algebra. The formula 

Z+, , (a l ) .  . . Z + , , ( q ) f i p h =  n (21r tanfymp)”2N-,’ 

Operators Z,, ZL, zh, Z,’ satisfy the same algebra as %,, 5?:, 2, x+ i.e. we have 

k 

j = 1  

n 6 m t m j ( a i - a j ) % L , ( a l )  ’ * * % L k ( a k ) a p h  
i C j  

and equation (1) allows us to express ‘in’ states in terms of operators ZL. 
The principal result of our previous paper (Smirnov 1984) is the derivation of the 

Gelfand-Levitan-Marchenko equation. We have introduced the operators Z, Z+ to 
write this equation in an elegant form. We write down the equation in the continuous 
case. In the previous paper the lattice case was investigated but there are no problems 
with the continuous limit 

xK-[a-a+fiy(m-l)]g-[x,  u+i I r - i iy (m- l ) ]  

x ZL-1 ( U  +fiy)z ,  (U) d a  (Ch/2Iri) 
m 

exp{i[kh(a) - k h ( a  + i y ) ] x } ~ - ( a  - a+ i i I r - iy )  I_, 
x g-( x, a + f i r  + i y ) Z l (  a + i y - ia)Zh (a) da.  

Here g-(x, a) is a covector function with the following asymptotics: 



L876 Letter to the Editor 

Nh is the number of holes in the state with which we calculate the scalar product of 
g-(x, ff ), 

K - ( ( T )  =$p[coth(fpc) - 11, 

c, = exp( -1 
The value of c h  is not essential in the present paper. Solving equation (2) we determine 
the action of e~p[ - i (2y ) ' /~u (x ) ]  on Ogh. 

An equation similar to (2) can be obtained for the covector function g+(x, a )  with 
the asymptotics: 

dk). 
sinh( m - i) yk sinh i r k  

k cosh f ( r -  y)k sinh(T- y)k 

CD 

g+(x, a> - a& e ~ p [ i ( 2 y ) ' / ~ u ( x )  -ipN,,a]. 
a-m 

We have only to substitute K -  for 

K + ( a )  =fp[coth(ipc+)+ I].  

In order to take into account the time dependence in the equations for g*(x, a ) ,  we 
are to replace everywhere k,(c+)x, kh(u)x  by -p",a)x,, -pc(a)x,. 

Consider the iterations of equations for g,(x, a )  in soliton-free subspace. The 
first step is to solve our equations in the subspace which contains only elementary 
bosons (without bound states): 

g+(x, t ,  a ) = a : h  C ( c l / 2 ~ V "  1 m 

K * ( a - - m )  
m = O  

m 

x fl K ( a ,  -a,-I + i r ) Z l ( a l ) .  . . z1(am) 

xexp[-i p~(a , )x , ]  da, . . . dam +. . . 

J = 2  

m 

, = I  

Dots denote terms with the annihilation operators of bound states and holes (solitons). 
We have for O$, e~p[*i(2y)l /~u(x,  t ) ] :  

a$, e~p[*i(2y)I /~u(x,  t ) ]  

00 

= a ; h  c (c1/2r i )"  n K ( q  -aJ-l +i r )Z , (c+ , ) .  . . &(am) 
m=O l-: J :2 

xexp( -i f pr(aj)xp)  do ,  . . . dam +. . . 
j = l  

. . dam + . . . 
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In the subspace containing the bound states one has to iterate our equations using the 
procedure proposed by Gockeler (1981). The final result is 

exp[*i(2y)Ii2u(x, t ) ]  = C ( 1 / 2 ~ i ) ~  
CD 

m=O ...+ " k = m  
n, 5 ( T i  Y 1- I 

XO, +$y(nl-3) ,  . . . , a , - i i y (n , -  I ) ,  . . . , (+k-$y(nk-l)]. 

For general reasons it is clear that the expansion of a$ cos (2y)1 /2u [~~ , ,  sin(2y)l"uI 
must contain only terms with an even (odd) number of elementary boson annihilation 
operators, i.e. 

,,,,, n k ( ( T l r .  . . , u k )  = (-l)nl+"'+n k ~ ~ l , . , . , n ~ ( ~ l ~  * * 3 U k ) .  (4) 
In order to prove this equation we must solve a complicated combinatorial problem. 
We have proved (4) only for n, + n2 +. . . nk = 1,2,3,4,5.  

Let us write first as an example some X': 

x;( U )  = X*( U )  = f 1, x;(u) = 1, 

X7,1(ul,  ~ ~ ) = s i n h p u ~ ~ / s i n h f p ( u ~ ~  - iy)  coship(u2,, +iy),  

x (4 cosh f p u Z I  cosh 

sinh &uZl +iy)(cosh puzl + 2  cos ipy) 
cosh&w2, + iy )  s inhip(a2,  -$iy) c o s h ~ p ( ( ~ ~ ~  +$iy) '  

cosh ipw,, +2 cos2 iyp), 

x;,lc(.l, w2) = 

(+. - IJ 1 

Using the expansion (3) one can obtain any form factor of e~p[* i (2y) ' /~u(x ,  t ) ]  
corresponding to any number of elementary bosons and their bound states: 

a$ exp[* i (2~) l /~u(x ,  t)IIpI, nl; . . . ; p k ,  n k ) i n  

k 

=exp(i  j =  1 I ~ ~ , ( w j ) x ~ ) ~ ~ l , . . . , n ~ ( p l , .  . . Pk), ( 6 )  
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Now let us consider the analytical properties of &,,,(U). From the definition of t,,, 
it is clear that &,,,(U) = tmn(-u) =&,(U). It can be shown that [,,,(U) has analytical 
continuation into the strip 0s Im (T c T - y. It has one pole at the point U = i r  - i y if 
m = n and has no poles if m # n. It also has min(m, n )  zeros at points (T = 
i?r -$y( m + n - 2 j  +4), j = 1,.  . . , min( m, n) .  On the line Im U = T - y one has: 

&,,,,(U + i T  - i y )  = 
min(m,n )  

j =  1 
n coth $[U + i n  +t i  y ( l m  - n l + 2 j  - 2)] 

xcothip[o-fiy(m + n  -2 j ) l  

dk).  e-ib sinh(i.rr- y)k sinh fymk sinh fynk 
k sinh( T - y) k sinh & yk cosh i( T - y)k 

Now we want to show that the two-particle form factor satisfies all requirements 
proposed by Karowsky and Weisz (1978). It follows from ( 5 )  and ( 6 )  that 

sinh pz  
6 , l ( P l ,  P2) = sinhip(z-iy) coship(z+iy)  5 I , l ( Z )  E f ( Z )  

z = 1ff211. 
The function f(z) has analytical continuation into the strip 0 s Im z s 7~ - y. The 
possibility of the production of a two-particle bound state is manifested in the existence 
of the simple pole at the point z = iy  which is the only singularity of f (z)  in the strip. 
Besides 

f ( z )  =f(-z)Sll(z) 

f ( in - iy  - z )  =f( in- iy  + z ) ,  

in complete agreement with Karowsky and Weisz (1978). 

I thank L D Faddeev and V E Korepin for useful discussions. I am grateful to E K 
Sklyanin for help with the computer calculations. 
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